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1. INTRODUCTION

In the theory of the elastic-perfectly plastic solid1'2 two
distinct types of constitutive equations are usually applied to the
same material: one type is used in the elastic range and the other
type is used in the plastic range. A similar statement could be made
for an elastic-plastic strain-hardening material. Our purpose here is
to show, by example, that a single set of equations of the rate type
can describe behavior both in the elastic and in the plastic range.
Furthermore, these equations can describe both loading and unloading.
Indeed, the mathematical machinery needed to describe elastic-plastic
behavior is contained in the classical theory of ordinary differential
equations. We shall show how elastic behavior can correspond to
uniqueness of solutions of such equations; how nonuniqueness of solution
can correspond to plastic flow, and how the possibility of different
constants of integration can explain why an elastic unloading curve can
differ from a previous elastic loading curve.

II. A ONE-DIMENSIONAL EXAMPLE

Before proceeding to our proper three dimensional example, we shall
present a one-dimensional example in order to exhibit how some of the
mathematical notions from ordinary differential equations theory apply.
We consider a single, strain component y and a single non-dimensionalized
stress component s which will correspond in our three-dimensional example
to shear strain and shear stress respectively in a simple shearing motion.
We assume that stress-rate is related to strain-rate and stress through
an equation of the form

ds 1 2n2n dy

where t is time and n is some positive integer.*

*We have chosen to work in terms of non-dimensional stress in order to
avoid the necessity of defining symbols for material constants, which
the reader then is required to keep straight. A reformulation in terms
of such constants can readily be made when needed.

'Prager, W. and Hodge, P. G., "Theory of Perfectly Plastic Solids,"
Dover, New York, L. C. # 68-19164 (1968).

2Thomas, T. Y., "Plastic Flow and Fracture in Solids," Academic Press,
New York, L. C. # 61-12277 (1961).
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In the one-dimensional case currently under discussion, we shall find
it convenient to eliminate t and write merely for (1)

ds 1 (2)

For simplicity, we shall first discuss the case n = 1. In this case the
solutions of (2) are

s. /i 4 2 2

1 1(4)

The restrictions on the range of y in which the solutions (3) are
valid are necessary since (2) requires that ds/dy be rion-negative.* The
solutions (4), in which s takes one of two constant values, may seem
rather special. However, they play an essential role in our formulation.

Imagine now that starting with y = 0, s - 0, one begins to increase

y. The only solution of (4) (with n - 1) possible with these initial
conditions is

s 1 sin .-
(

As y is increased, s will be given by (5) and will continue to
be given by (5) as long as y remains less than vr w/2. Indeed, the
Piccard-Lindelof uniqueness theorem3 assures us of this, since a
Lipschitz condition will hold when -l//r < s < l/1V. Indeed, as long
as Isl does not reach l//2 , s will follow the elastic solution (S)
whether y is increased, decreased or otherwise varied.

Of course we can just as welt Let y//ff lZie in a range

m + -r c 2m + c + for some integer m other than zero.

However this would just introduao an unneceasary redundancy, sinoe 271M
can be absorbed into the constant a.

Coddington, E. A. and Levinson, N., "Theory of Ordinary DifferentiaL
Equations," McGraw-Hitt, New York (1955).
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Now imagine that y is increased until it reaches the value wr2"/2
and is thenceforth increased further. The stress will have then reached
the value 1//2 at which the Lipschitz condition fails, and so uniqueness
will no longer be implied by the Piccard-Lindelof theorem. Since no
real solutions of (2) (with n - 1) exist for s > 1//2-, and since s cannot
decrease when y is increasing, it follows that s will remain at the value
i//2-as long as y is not decreasing. In other words, in loading, after
s has reached 1/r2, the first solution (4) takes over. This is a plastic
yield solution, and it must prevail at the critical value of s, namely
s = l//2. This process is illustrated in Figure 1.

Now suppose that yielding proceeds as described above until the
strain has reached the value y, > wVT/2. Suppose that at this point
the strain begins to decrease. The differential equation (2) then allows
the stress to follow more than one solution: It allows the solution

I Y'Yl + W r212 (6)s -- sin

but it now also allows the solution

s = l , (7)

since both for (6) and (7), ds/dy > 0 when y is decreasing and s is
not increasing. However, note that for decreasing y, (7) is an asympto-
tically unstable solution in the sense that a small perturbation in s will
cause the solution to move onto one of the forms (3) which then takes s
far from l/V2 as y decreases further. However, (6) is neutrally stable
in the sense that a small perturbation in s will not cause an increasing
divergence of the perturbed solution from (6). If we make the assumption,
then, that the stable solution will be chosen, then we see that s will
follow the solution (6), as shown in Figure 2. As soon as s is below
1/v2, the (s,y) values will have again entered the region of uniqueness
of the differential equation (2) and, thus, will stay on the curve (6)
whether y is decreased or even increased again as long as the increase
or decrease is not so large as to bring s to one of the yield values y

S± I/V. There is a return to elastic behavior about a new stress free
state, that for which y = -1 -2w/2.

In our formulation then, elastic behavior is thus related to unique-
ness of solutions of a differential equation. Different elastic regimes
correspond to different constante of integration. Plastic behavior is
related to nonuniquenasa.

Let us now go a bit further with our example. Suppose that we
continue decreasing till we reach s = - l/vr-. Again there will be plastic
yield (see Figure 3); s cannot decrease further and cannot increase as



long as y is decreasing. Thus s will follow the solution s -/r
until y is made to increase again, after which it will follow another
one of the solutions (3). It will enter another elastic regime. If y

v is increased and then decreased in a periodic manner over several periods
beyond the point that s reaches the critical value 1/ r2 on each increase
and -i/VT on each decrease, the solutions will follow a hysteresis loop
(see Figure 4).

Now one objection to the above argument is that in the elastic
regimes the (y, s) diagram follows a sine curve, whereas it would be
preferable to have it follow a straight line until it is near yield and
then curve abruptly to join the yield curve, say s =l/ r2. Such behavior
can be realized by choosing a large enough value of n, as we shall
illustrate now. Indeed, solutions to (2) are given by

- ~ 1 c=B (L )' (8)
2 n- n 2 n (U

where B X(a,b) is the incomplete beta function, and where the plus si'gn
is used~ if s >0 and the minus sign if s <0. (The function so defined
is analytic for -1 < F2s < 1). Yield occurs at s)I 2

Indeed, the behavior is qualitatively the same as in the example
for n =1, except that linear elastic-perfectly plastic behavior joined
by a transition knee is approximated for large n.

In Figures 5, 6 and 7 we show curves of stress versus strain increas-
ing beyond yield for n -16, 32 and 64.

111. A THIREE-DJIMENSIONAL EXAMPLE - ELASTIC-PERFECTLY PLASTIC
SOLID-PRELIMINARY ANALYSIS

We shall treat here a three-dimensional example which corresponds
to an elastic-perfectly plastic solid undergoing infinitesmal strain.
The solid will have a strain energy function valid for each of its
elastic regimes. It will exhibit yield in the form of nonuniqueness
of solutions of its governing rate-type constitutive equations. And,
again, elastic behavior will be associated with uniqueness of solutions
of ordinary differential equations and plastic behavior with nonuniqueness.
Moreover, in the plastic regime, it will follow the Prandtl-Reuss equations,
not as a new assumption, but as a consequence of the governing differential
equat ions.

4 Abra~mowitz, M. and Stcegun, 1T. A., "Hlandbhook of M'athemnatical Functi~ons,"
U. ' . Go'..errumn'nt Printing Office, Washington, D.C., L. C. # 64-60036

(1.964).
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We shall write eli for the infinitesmal strain tensor and ai. for

the stress tensor. The strain-deviator tensor -. and the stress-
deviator tensor 4 ,, are defined by

Lj =ij 3 kkij (9)

1

6ij * °i -i 3 kk 6 .J . (10)

We define the non negative quantities a and • by

22 = .. .. (11)

82. .ij . (12)

We assume a strain energy of the form

W 2
W 2- ekk + *(a) (13)

where * is a function such that *' > 0 in some neighborhood of a - 0
and 0'(ca)/a has a well defined limit as a 0 0, and, of course

aWS- • .(14)

ij

Note that (11) gives

a J(15)

Furthermore, (9) gives

__E6 - i~ (16)Sik jz 3 k46iJ

11



Thus (15) and (16) yield

aak ij ki i J

(17)

We obtain, then, from (13), (14), and (17),

ij -- Kekk~ij + *a i , (18)

whence, using (9) and (10), we have

akk = 3 Kekk (19)

46 - - (20)

Squaring both sides of (20), summing and applying (12) and (13),
we get

a2 .6 2 2 (21)ij ij O 2 ij 'j

or

(22)

(Note, we have assumed that 4'(a) > 0 iii some neighborhood of a 0 so
that (22) will follow from (21) there. Remember that 8 > 0).

Lot the solution to (22) be given by

a .(23)

12
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Then from (20), (22), and (23), we get

i ii = •jC•-- ii % 3 (24)

or

. (25)
a ij i

Differentiation of (25) with respect to time (where dot denotes time

differentiation) yields

8 2i 82 i 8 ij ii

Multiply both sides of (26) by 4.. and sum to get

~ ~ ~ 6 ~4 ,-..~ (27)ij + 8 ij ij ij ij

Now (12) yields by differentiation

(28)

Use (12) and (28) in (27) to obtain

( 1 B 2 .
B ij Lij

or

1 6 (29)

13
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If we now substitute the right hand side of (29) for • in (26) and

then solve for 4., we obtain

2 ' " ij~kt 9U (-30)

At this juncture, we make a fundamental new assumption which is the
basis of our departure. We assume that the basic constitutive equations
are (19) and (30) instead of (19) and (20). We consider a material of the
rate type for which the differential equations (30) are the governing
constitutive relations between stress deviator and strain deviator.

Thus behavior described by (20) can occur as one possible solution
of (30). Other solutions are obtained by replacing c£ by ekz + Ck.

in (20), where ckL is a traceless constant tensor: this can be seen

immediately from (30) since the time derivatives of ek and ek + ckZ

are the same and the strain deviator enters (30) only through its
derivatives.

Furthermore, equation (29), which can be derived from (30) by
multiplying both sides by 4ij and summing, plays a critical role in the

transition to the plastic regime. We shall now show, by specific examples,
how with certain choices of function *(0), the equation (29) will govern
the onset of plastic yield.

IV. THREE-DIMENSIONAL EXAMPLES OF ELASTIC-PERFECTLY PLASTIC
SOLIDS GOVERNED BY A SINGLE EQUATION

We now seek examples of functions p, such that equation (30) will
give elastic-perfectly plastic behavior. Please note that although in
our derivation in Section III above, we used (29) to get to (30), in
fact it is not difficult to establish that (29) also follows from (30).

Now let us observe that if we had

1( = 1 77, (31)

14



then (29) would read

2do = 2 l k (32)

This would then imply the von Mises yield condition. Indeed if 82

rises to the value unity, then (32) implies that as long as positive
work is being done by the shearing stresses, $2 cannot decrease and
thus must remain at unity.

Now (31) gives us a differential equation for i(8). Integration of
this equation, with the constant of integration chosen so that 4(8)/8
has a removable singularity, and is thus well defined, at 0 - 0 gives

p(1) -sin- - . (33)

(To see why we want J(8)/8 to be well defined at 8 = 0, see how
this expression figures in (25)).

If (33) is then used for i, (30) becomes

sin 18 sin

: Observe then, that for an assignment of e.. as a continuously

differentiable function of time (or even as a piecewise smooth function
of time) the Piccard-Lindelof theorem implies a unique solution A6 (t)

2 <1 Iasr kda 82of (34) provided B < 1. If as remarked above, a reaches unity with
positive shear work continuing to be put in, then 82 remains equal to
unity, and we have plastic flow with a von Mises yield condition. During
plastic yield, we put 8 1 in (34) to obtain

-2 •
6 + +- E.. .()

Note that the equations (35) are the Prandtl-Reuse equations.
(The reader is reminded that the material constants have been given
speci...c values for simplicity. Otherwise they should appear with
arbitrary values in the Prandtl-Reuss equations).

i5



Next let us look at the solutions to (34) in the region of

uniqueness, $2 < 1. (i.e., Let us look at solutions in the elastic
regime.) If we compare (33) and (23) and (22), we get

B sincz- '(a) a (36)

whence

4(c) = 1 - cos a, (37)

if we choose the constant of integration of the equation (36) for *
so that 4(0) = 0. (Since ý(a) figures in the strain energy function,
to which one can add an arbitrary constant without affecting the stress-
strain relations, this choice of the constant of integration is merely
a matter of taste: it insures thut O(a) gives a contiibution to the
strain-energy which is non negative and vanishes at a 0.)

Now (13) with the aid of (37) gives

K 2
W = (e kk) + I - cos a (38)

whence (20) yields

sin a
a 1 (39)

Now, (39) is a particular solution of (34). To get the general
elastic solution, we can, according to the remarks at the end of Section
III, replace c. by c. + c.. where c.. is a traceless constant tensor.

Thus, we obtain for the elastic solutions of (34)

sin /( ck( + ckZ)( Ek + ckd)
'6 ij = (E ij + C ij) (40)

/(6k + ckZ)( k + 4k)

where ckk = 0. Furthermore, with the restriction 52 < 1, (36) yields

- U + ckd (Ey + 'kd) <

16



as a constraint on the region of validity of (40) for given c The
strain energy corresponding to a given elastic regime is then

W=K ( k2 +(1
w = .(ek) + 1- cos V(kZ + ck)'( + CkL) (41)

Thus for each elastic regime, we have a strain energy function (41).
The onset of plasticity is governed by equation (32). During plastic
flow we have the Prandtl-Reuss equations (35). And all of these conclu-
sions are consequences of the single set of constitutive equations (34).

We now consider simple shear for which A2 =6 21 =ý* '6, 6. 0
otherwise, F_2 - = - .. = 0 otherwise. We obtain from (12)

2 2 2 26 .12 + 621 2. (42)

We also find that

.6.. ZY (43)
11 ij

If we put (42) and (43) into (32), we obtain equation (1) with
n 1, and thus the example of Sectioi, II.

For other values of n, let us put

VO1 (44)

into (30). We then get from

()=B 2n (ff 2n "

For this our analysis holds in a manner quite similar to that
developed above. Equation (29) gives

'62 = 2 i- (46)

17



[ 2so that again 2 cannot increase beyond unity as long as positive shear
work is being done and a von Mises yield condition holds. During yield

one obtains from (30) and (44) the Prandtl-Reuss equations

.ij T(-- ) ij V(l) ij k. ' (47)

During an elastic regime, one gets a stress-strain relation of the form

v( ¢(' 2, + ck e)9, + ck R,
ij = 'Ck (C cij) , (48)

k Z Cki £Y Cki

where Ckk = 0 and eii is restricted to the domain

¢(£+ C k +4( ekk + C'kd) < p(l) * (49)

and 0(a) is obtained from '(8) by the relations (22) and (23). The stress
versus strain in a simple shear regime is shown in Figures 5, 6, and 7
for different values of n. The inverse of the elastic modulus, namely
p(8)/8 is shown plotted versus 0 for various values of n in Figures 8,

9 and 10. Note that for n = 16, our calculations show that to five
decimal place accuracy, it does not deviate from unity until $ exceeds
0.8 and it achieves a maximum value of 1.0411 at yield, i.e., at 8 = 1.
(It is constant to within 4.2% through the whole elastic range.) For
n = 32, the inverse of the modulus remains one to five decimal places
till 8 > .92 and it has the value 1.0207 at yield. For n - 64 it remains
unity to five decimal places until 8 > .96, and it has a yield value of
1.0104. (It is constant to within about 1% in the whole elastic range.)
We see then that with large enough values of n, one may approximate as
closely as one wishes the type of elastic-perfectly plastic behavior in
which there is a sudden break in the slope of the stress-strain curve
at yield.

V. STRAIN HARDENING, AN EXAMPLE

We shall now discuss the extension of the foregoing ideas to a
strain-hardening material. To this end, consider any one of the functions
ý(a) discussed above aid replace (13) by

K 2 K 2
W = T- (ekk) + + V ( )+ (50)

where K is a material constant.

18
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I
(For example, we may take #(a) - 1 ccs a in (50). Then, using (14),
instead of (20), we obtain

4 ij " I lij (Q) '- Ij

If we define pij by

Pij = i - KC.i , (52)

i ji i (53

then we have from (51) and (52)

Pij j i

If we now define 1 by

Pij Pij (54)

we obtain instead of (30) the equation

hij ýej~ +1 2 Pij PkL. *il (55)

or + +-

ij ij Ci + 2 (4ij - "ij) (6 kZ K KE.k) 'jFjt
(56)

We obtain instead of (29)

*~ 1 *(57)

If p(•) is taken such that

') = (i -~ 2n -1/2 (58)

19



we see that we must have ;2 < 1 and yield occurs when 4 - ± I. Duringyield we get the flow rule

*I 91 j* X- ( q

Uniqueness of solutions of (56) holds for •2 < 1. These solutions
are of the form

A + ýX cd(e i + ci.) L 60)

jfrý + kk (ekt ckd)

where Ckk a 0. The strain energy has the form

W - (ek) 2  + K C.C + ( + c ( + 61 )2J kkj ii "l+ckl) ( 'kl + .k~) (61)

The yield condition c = 1 as implied by (57) and (58) is then

(4 ij - K ij) (Aij KCij)= . (62)

Por an example of how this differs from the perfectly plastic solid,
lot us consider simple shear with K M 1/2 and n = 1. We then obtain

C VY6 (63)

so that the plastic yield solutions are

I + + (64)
4.

The elastic solutions are

1 / S l + -)T- c <2 + c (6S)

20
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A plot of the stress response to a strain in which y is first

increased beyond yield and then decreascd until yield again occurs is
shown in Figure 11.

VI. DISCUSSION AND CONCLUSIONS

Our purpose has been to show by example that elastic-plastic
behavior can be embodied in a single set of constitutive relations of
the rate type. Elasticity is then associated with uniqueness and
plasticity with nonuniqueness of solutions of the differential equations
which the constitutive relations comprise. We wish now to make explicit
a point which has up to now only been implicity stated: the plastic
solutions do not arise as asymptotic solutions of the equations. They
are reached at definite finite values of strain during any given loading.
There is no need to replace any solution by an asymptotic solution: the
plastic and the elastic solutions are exact, both for loading and un-
loading.

In closing, we ask the reader to bear in mind that in this report
we are merely presenting examples to show that it is possible to unify
elasticity and plasticity in a single rate-type theory. We hope that in
the future we can state the notions herein contained more generally and
abstractly so that their application can be extended to more types of
materials than those discussed herein.
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